Vitamin A affects the expression of antioxidant genes in bovine mammary epithelial cells with oxidative stress induced by diethylene triamine-nitric oxide polymer
نویسندگان
چکیده
The considerable increase in oxygen requirements due to the high metabolic rate of the bovine mammary epithelial cells (BMEC) during lactation results in an augmented production of reactive nitrogen species (RNS), such as nitric oxide (NO), which may expose cows to increased oxidative stress. Vitamin A (VA) has been shown in several studies to enhance the antioxidant defence system against oxidative stress, but whether the reason is related to a reduced NO production remains unclear. Diethylene triamine-nitric oxide polymer (NOp) is a type of NO-generating compound, which is safe, efficacious, and releases NO over a long period. The current study was conducted to investigate the effect of VA on the antioxidant function in BMEC and the underlying mechanism by discussing the protection of VA on NO-induced oxidative stress of BMEC. The experiment was conducted using a single-factor completely randomized arrangement. Primary BMEC were isolated from the mammary glands of Holstein dairy cows. The third generation cells were randomly divided into four equal groups with six replicates each. Each group received different combinations of VA and NOp treatment as follows: controls (without VA and NOp), NOp treatment alone, VA treatment alone, and VA and NOp treatment together. The lysates were collected to evaluate the activities of glutathione peroxidase (GPx) and thioredoxin reductase (TrxR) and the contents of reactive oxygen species (ROS) and malondialdehyde (MDA), and the cell-free supernatants were collected to analyze selenoprotein P (SelP) content, inducible nitric oxide synthase (iNOS) activities and nitric oxide (NO), interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α) contents. The results suggested that compared to the control, the cell proliferation, the activity of the antioxidants GPx and TrxR, the content of SelP and the antioxidant gene expressions of GPx1, GPx4, and TrxR1 were significantly decreased (P < 0.05), and the contents of ROS and MDA, the activity of iNOS, the contents of NO and IL-1, IL-6, TNF-α, and their mRNA expressions were increased dramatically in the NOp treatment alone group (P < 0.05), but the opposite changes were observed in the VA treatment alone group. Compared to the NOp treatment alone, the VA and NOp treatment together significantly improved cell proliferation, the activities of the antioxidants GPx and TrxR, and the gene expressions of GPx1 and TrxR1, and dramatically decreased the contents of ROS and MDA, the activity of iNOS, the contents of NO and IL-1, IL-6, TNF-α and their mRNA expression levels (P < 0.05). The present research suggests that VA can improve the antioxidant function of BMEC and protect the cells from experiencing the NOp-induced oxidative stress by regulating antioxidant gene expression. The probable mechanism is that VA can reduce the activity of iNOS and its mRNA expression by down-regulating of the expression of IL-1, IL-6, and TNF-α to reduce NO production. However, the exact mechanism warrants future exploration.
منابع مشابه
O-1: Thraputic Effect of Silymarin, Celecoxib and Exogenous Testosterone on Varicocele-Induced Disorders; Possible Mechanisms
Background Varicocele (VCL) is characterized by a progressive disorder which is defined by tortuosity of the pampiniform plexus veins that exerts bilateral impacts. 50-60 percent of males with infertility problems are suffering from VCL. Considering VCL-induced massive problems in human fertilizing potential, investigating different aspects of VCL-induced derangements is gaining considerable at...
متن کاملMeasurement of Renal Vitamin E for Assessment of Iron and Nitric Oxide Interaction in Rats
Oxidative stress has been implicated as an important factor in induction of many disorders such as nephropathy and cancer. Iron by producing hydroxyl radical can cause this kind of stress. On the other hand nitric oxide (NO) when its concentration is high results in oxidative stress. Iron and NO have some interactions in each other function but there is no total agreement on this. For example i...
متن کاملExogenous Nitric oxide (NO) induced oxidative stress and increased production of secondary metabolites in Catharanthus roseus Callus Cells
The objective of the study was to investigate the effect of exogenous nitric oxide on cellular response and production of secondary metabolites in Catharanthus roseus callus. The Cell suspension and callus of C. roseus were treated with sodium nitroprusside, then cell viability, morphology, the amount of H2O2, proline, lipid peroxidation, the activity of superoxide dismutase, catalase and perox...
متن کاملP-169: Protective Effect of Vitamin E on Cypermethrin - Induced Damages Correlates with P53 Gene Expression and Nitrosative Stress
Background: Because of fast rate of degradation and low mammalian cells toxicity the cypermethrin (CPM) is a wide used insecticide in domestic agriculture and in veterinary medicine applications. The compound exerts its pathological impact by down-regulating the antioxidant status. Therefore, current study was designed to evaluate the protective effect of vitamin E on CPMinduced apoptosis and n...
متن کاملChanges of stress oxidative enzymes in rat mammary tissue, blood and milk after experimental mastitis induced by E. coli lipopolysaccharide
The present study investigated the effects of E. coli lipopolysaccharide (LPS) induced mastitis model in rat on the activity of antioxidant enzyme systems. To achieve this purpose, E. coli LPS were infused into the mammary gland of 12 rats 72 hr postpartum and compared with 12 rats in control group infused intramammary placebo sterile pyrogene – free, physiological saline. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016